Article 11320

Title of the article

COMPLEX OF MODELING OF RADAR SIGNALS USING THE UDP PROTOCOL
AND MATLAB AS A COMPUTING CORE 

Authors

Bokov Aleksandr Sergeevich, candidate of technical sciences, senior scientist researcher of Science Research Center for Radioelectronic Systems of Aerial Vehicles, associate professor of Department of Radioelectronics and Communications, Institute of Radioelectronics and Information Technologies, Ural Federal University named after the first President of Russia B. N. Yeltsin (32 Mira street, Ekaterinburg, Russia), a.s.bokov@urfu.ru
Vazhenin Vladimir Grigor'evich, candidate of technical sciences, director of Science Research Center for Radioelectronic Systems of Aerial Vehicles,
associate professor of Department of Radioelectronics and Communications, Institute of Radioelectronics and Information Technologies, Ural Federal University named after the first President of Russia B. N. Yeltsin (32 Mira street, Ekaterinburg, Russia), v.g.vazhenin@urfu.ru
Mukhin Vladimir Vital'evich, candidate of technical sciences, deputy general director – chief designer for Research and Development, Ural Design Bureau «Detal» (8 Pionerskaya street, Kamensk-Uralsky, Sverdlovsk region, Russia), upkb.nio100@mail.ru
Iofin Aleksandr Aronovich, candidate of technical sciences, deputy chief designer, Ural Design Bureau «Detal» (8 Pionerskaya street, Kamensk-Uralsky, Sverdlovsk region, Russia), tehdep630@yandex.ru

Index UDK

519.687.6, 621.396.96 

DOI

10.21685/2307-4205-2020-3-11 

Abstract

Background. It is known that mathematical   modeling allows researchers to compare and reasonably choose the parameters of the formation and processing of signals of various systems, including taking into account the combination of non-ideal technical means and a variety of application conditions. The long history of the development and improvement of radar systems has led to the accumulation of high-tech mathematical models developed using often incompatible source codes. In some cases, for example, when customizing a system-level model of a device or transferring models to a new computing platform, it is necessary to organize the possibility of joint work of models within a common software complex.
Materials and methods. The article considers a software complex aimed to simulate signals for airborne radars. At the same time, the user interface, the choice of parameters of the radar scene and the control of the modeling process are implemented in the high-level language Delphi, and
MATLAB is chosen as the computational core. Interaction between a user's Windows-application and MATLAB is performed via UDP protocol over Ethernet, so the MATLAB environment can physically reside on a remote server. The whole process of modeling radio signals is divided into 5 consecutive steps, each of which carries out one model. Step by step, the variables are stored in the MATLAB workspace.
Conclusions. This method of constructing the software package allowed us
to fulfill the conditions for the rapid development of a functional friendly user interface, the use of several mathematical models using matrix calculations and complex numbers, the implementation of fast collaborative development and refinement of mathematical models of the software complex without recompiling the user’s Windows-application. Specific examples of modeling radio signals and images using the proposed software complex based on the use of the UDP protocol and MATLAB as computing core are given. 

Key words

radar signal, mathematical modeling, software complex, MATLAB, UDP protocol. 

 Download PDF
References

1. Model'no-orientirovannoe proektirovanie vstraivaemykh sistem. TsITM Eksponenta [Model-oriented design of embedded systems. QUOTE from the Exhibitor]. Available at: https://exponenta.ru/mbd (accessed May 04, 2020). [In Russian]
2. Boev S. F. Upravlenie riskami proektirovaniya i sozdaniya radiolokatsionnykh stantsiy dal'nego obnaruzheniya [Risk management in the design and creation of radar stations of distant detection]. Moscow: Izd-vo MGTU im. N. E. Baumana, 2017, 430 p. [In Russian]
3. Klimov A. Tekhnologii razrabotki i otladki slozhnykh tekhnicheskikh sistem: VII Vseros. konf. Sessiya: «Radiolokatsionnye sistemy» [Technologies for developing and debugging complex technical systems: VII all-Russian conf. Session: «Radar system»]. Moscow, 2020, pp. 84–87. [In Russian]
4. Shidlovskiy D. Tekhnologii razrabotki i otladki slozhnykh tekhnicheskikh sistem: VII Vseros. konf. Sessiya: «Sistemy svyazi» [Technologies for developing and debugging complex technical systems: VII all-Russian conf. Session: «Communication system»]. Moscow, 2020, pp. 214–216. [In Russian]
5. Krotov I. S., Kabaev A. K. Lyul'evskie chteniya: materialy XI mezhregional'noy otraslevoy nauch.-tekhn. konf. (20–22 marta 2018 g.) [Lyulyevsky readings: materials of the XI interregional branch scientific and technical conference (March 20-22, 2018)]. Ekaterinburg: YuUrGU, 2018, p. 61. [In Russian]
6. Bokov A. S., Vazhenin V. G., Gusev A. V., Nagashibaev D. Zh., Iofin A. A. Nadezhnost' i kachestvo slozhnykh system [Reliability and quality of complex systems]. 2017, no. 3 (19), pp. 60–67. DOI 10.21685/2307-4205- 2017-3-9. [In Russian]
7. Gurin I. A., Spirin N. A., Lavrov V. V. Teplotekhnika i informatika v obrazovanii, nauke i proizvodstve: sb. dokl. V Vseros. nauch.-prakt. konf. (TIM'2016) [Heat engineering and Informatics in education, science and production: collection of reports V all-Russian scientific and practical conference (TIM'2016)]. Ekaterinburg: UrFU, 2016, pp. 190–193. [In Russian]
8. Uss M. Proektirovanie radiolokatsionnykh sistem v MATLAB i Simulink. Vebinar [Design of radar systems in MATLAB and Simulink. Web conference]. Available at: http://matlab.ru/webinars/proektirovanieradiolokacionnyh- sistem-v-matlab-i-simulink (accessed Dec. 30, 2019). [In Russian]
9. Surkov M. A., Gubskov Yu. A., Savkin E. I., Gromov Yu. Yu. Promyshlennye ASU i kontrollery [Industrial automated control systems and controllers]. 2018, no. 8, pp. 16–31. [In Russian]
10. Markov Yu., Bokov A., Vazhenin V., Margilevsky S. Radiation and Scattering of Electromagnetic Waves (RSEMW). 2019, pp. 352–355. DOI 10.1109/RSEMW.2019.8792776.
11. Lepekhina T. A., Nikolaev V. I. ITM Web of Conferences. 2019, vol. 30, p. 15029. DOI 10.1051/itmconf/ 20193015029
12. Bokov A. S., Vazhenin V. G., Iofin A. A., Mukhin V. V. Nadezhnost' i kachestvo slozhnykh system [Reliability and quality of complex systems]. 2019, no. 3 (27), pp. 40–49. DOI 10.21685/2307-4205-2019-3-5. [In Russian]

 

Дата создания: 24.11.2020 14:47
Дата обновления: 24.11.2020 16:16